Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542895

RESUMO

The resolution of inflammation is the primary domain of specialised pro-resolving mediators (SPMs), which include resolvins, protectins, and their forms synthesised under the influence of aspirin and the maresins. The role of these SPMs has been discussed by many authors in the literature, with particular reference to neuroinflammation and significant neurological disorders. This review discusses the role of G protein-coupled receptor 18 (GPR18), resolvin D2 (RvD2) activity, and the GPR18-RvD2 signalling axis, as well as the role of small molecule ligands of GPR18 in inflammation in various health disorders (brain injuries, neuropathic pain, neurodegenerative/cardiometabolic/cardiovascular/gastrointestinal diseases, peritonitis, periodontitis, asthma and lung inflammation, Duchenne muscular dystrophy, SARS-CoV-2-induced inflammation, and placenta disorders. The idea of biological intervention through modulating GPR18 signalling is attracting growing attention because of its great therapeutic potential. With this paper, we aimed to present a comprehensive review of the most recent literature, perform a constructive view of data, and point out research gaps.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Gravidez , Feminino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Transdução de Sinais , SARS-CoV-2 , Mediadores da Inflamação , Receptores Acoplados a Proteínas G
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895952

RESUMO

Itch and pain are closely related but distinct sensations that share largely overlapping mediators and receptors. We hypothesized that the novel, multi-target compound E153 has the potential to attenuate pain and pruritus of different origins. After the evaluation of sigma receptor affinity and pharmacokinetic studies, we tested the compound using different procedures and models of pain and pruritus. Additionally, we used pharmacological tools, such as PRE-084, RAMH, JNJ 5207852, and S1RA, to precisely determine the role of histamine H3 and sigma 1 receptors in the analgesic and antipruritic effects of the compound. In vitro studies revealed that the test compound had potent affinity for sigma 1 and sigma 2 receptors, moderate affinity for opioid kappa receptors, and no affinity for delta or µ receptors. Pharmacokinetic studies showed that after intraperitoneal administration, the compound was present at high concentrations in both the peripheral tissues and the central nervous system. The blood-brain barrier-penetrating properties indicate its ability to act centrally at the levels of the brain and spinal cord. Furthermore, the test compound attenuated different types of pain, including acute, inflammatory, and neuropathic. It also showed a broad spectrum of antipruritic activity, attenuating histamine-dependent and histamine-independent itching. Finally, we proved that antagonism of both sigma 1 and histamine H3 receptors is involved in the analgesic activity of the compound, while the antipruritic effect to a greater extent depends on sigma 1 antagonism.

3.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686188

RESUMO

The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.


Assuntos
Aterosclerose , Plaquetas , Animais , Ratos , Xantina/farmacologia , Adenosina
4.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762006

RESUMO

Chronic inflammation plays an important role in the development of neurodegenerative diseases, such as Parkinson's disease (PD). In the present study, we synthesized 25 novel xanthine derivatives with variable substituents at the N1-, N3- and C8-position as adenosine receptor antagonists with potential anti-inflammatory activity. The compounds were investigated in radioligand binding studies at all four human adenosine receptor subtypes, A1, A2A, A2B and A3. Compounds showing nanomolar A2A and dual A1/A2A affinities were obtained. Three compounds, 19, 22 and 24, were selected for further studies. Docking and molecular dynamics simulation studies indicated binding poses and interactions within the orthosteric site of adenosine A1 and A2A receptors. In vitro studies confirmed the high metabolic stability of the compounds, and the absence of toxicity at concentrations of up to 12.5 µM in various cell lines (SH-SY5Y, HepG2 and BV2). Compounds 19 and 22 showed anti-inflammatory activity in vitro. In vivo studies in mice investigating carrageenan- and formalin-induced inflammation identified compound 24 as the most potent anti-inflammatory derivative. Future studies are warranted to further optimize the compounds and to explore their therapeutic potential in neurodegenerative diseases.


Assuntos
Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Inflamação , Adenosina , Carragenina
5.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628900

RESUMO

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores Histamínicos H3 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Maleato de Dizocilpina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transdução de Sinais , Cognição
6.
Biomolecules ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37509114

RESUMO

Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Xantina/farmacologia , Xantina/uso terapêutico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Dopamina , Ligantes , Relação Estrutura-Atividade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Monoaminoxidase/metabolismo , Dopaminérgicos/farmacologia
7.
J Med Chem ; 66(14): 9658-9683, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37418295

RESUMO

In search of new dual-acting histamine H3/sigma-1 receptor ligands, we designed a series of compounds structurally based on highly active in vivo ligands previously studied and described by our team. However, we kept in mind that within the previous series, a pair of closely related compounds, KSK67 and KSK68, differing only in the piperazine/piperidine moiety in the structural core showed a significantly different affinity at sigma-1 receptors (σ1Rs). Therefore, we first focused on an in-depth analysis of the protonation states of piperazine and piperidine derivatives in the studied compounds. In a series of 16 new ligands, mainly based on the piperidine core, we selected three lead structures (3, 7, and 12) for further biological evaluation. Compound 12 showed a broad spectrum of analgesic activity in both nociceptive and neuropathic pain models based on the novel molecular mechanism.


Assuntos
Neuralgia , Receptores Histamínicos H3 , Receptores sigma , Humanos , Histamina , Receptores Histamínicos H3/química , Ligantes , Nociceptividade , Piperazina , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piperidinas/química , Neuralgia/tratamento farmacológico , Relação Estrutura-Atividade
8.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241939

RESUMO

Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.


Assuntos
Histamina , Triazinas , Humanos , Receptores Histamínicos H4 , Triazinas/farmacologia , Triazinas/uso terapêutico , Receptores Histamínicos , Dor/tratamento farmacológico , Ligantes , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Acoplados a Proteínas G
9.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240392

RESUMO

The lack of selective pharmacological tools has limited the full unraveling of G protein-coupled receptor 18 (GPR18) functions. The present study was aimed at discovering the activities of three novel preferential or selective GPR18 ligands, one agonist (PSB-KK-1415) and two antagonists (PSB-CB-5 and PSB-CB-27). We investigated these ligands in several screening tests, considering the relationship between GPR18 and the cannabinoid (CB) receptor system, and the control of endoCB signaling over emotions, food intake, pain sensation, and thermoregulation. We also assessed whether the novel compounds could modulate the subjective effects evoked by Δ9-tetrahydrocannabinol (THC). Male mice or rats were pretreated with the GPR18 ligands, and locomotor activity, depression- and anxiety-like symptoms, pain threshold, core temperature, food intake, and THC-vehicle discrimination were measured. Our screening analyses indicated that GPR18 activation partly results in effects that are similar to those of CB receptor activation, considering the impact on emotional behavior, food intake, and pain activity. Thus, the orphan GPR18 may provide a novel therapeutic target for mood, pain, and/or eating disorders, and further investigation is warranted to better discern its function.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Roedores , Ratos , Masculino , Camundongos , Animais , Ligantes , Dor/tratamento farmacológico , Receptores de Canabinoides , Dronabinol/farmacologia , Receptor CB1 de Canabinoide , Relação Dose-Resposta a Droga , Receptores Acoplados a Proteínas G
10.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108661

RESUMO

Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Humanos , Animais , Histamina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Obesidade/tratamento farmacológico , Aumento de Peso , Ligantes , Antagonistas dos Receptores Histamínicos
11.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903593

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Assuntos
Doença de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inibidores da Colinesterase/química , Receptores Histamínicos , Monoaminoxidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Ligantes
12.
Inflamm Res ; 72(2): 181-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36370200

RESUMO

OBJECTIVE: Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS: The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS: Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 µM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS: These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.


Assuntos
Chalconas , Histamina , Camundongos , Humanos , Animais , Histamina/metabolismo , Doenças Neuroinflamatórias , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Chalconas/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Microglia/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptores Histamínicos/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
13.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362227

RESUMO

The adenosine A2A and A2B receptors are promising therapeutic targets in the treatment of obesity and diabetes since the agonists and antagonists of these receptors have the potential to positively affect metabolic disorders. The present study investigated the link between body weight reduction, glucose homeostasis, and anti-inflammatory activity induced by a highly potent and specific adenosine A2B receptor antagonist, compound PSB-603. Mice were fed a high-fat diet for 14 weeks, and after 12 weeks, they were treated for 14 days intraperitoneally with the test compound. The A1/A2A/A2B receptor antagonist theophylline was used as a reference. Following two weeks of treatment, different biochemical parameters were determined, including total cholesterol, triglycerides, glucose, TNF-α, and IL-6 blood levels, as well as glucose and insulin tolerance. To avoid false positive results, mouse locomotor and spontaneous activities were assessed. Both theophylline and PSB-603 significantly reduced body weight in obese mice. Both compounds had no effects on glucose levels in the obese state; however, PSB-603, contrary to theophylline, significantly reduced triglycerides and total cholesterol blood levels. Thus, our observations showed that selective A2B adenosine receptor blockade has a more favourable effect on the lipid profile than nonselective inhibition.


Assuntos
Doenças Metabólicas , Antagonistas de Receptores Purinérgicos P1 , Animais , Camundongos , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/metabolismo , Peso Corporal , Colesterol/uso terapêutico , Glucose/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Nucleosídeos de Purina , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Receptor A2B de Adenosina/metabolismo , Teofilina , Triglicerídeos/uso terapêutico
14.
Pharmaceutics ; 14(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297622

RESUMO

The clinical symptoms of Parkinson's disease (PD) appear when dopamine (DA) concentrations in the striatum drops to around 20%. Simultaneous inhibitory effects on histamine H3 receptor (H3R) and MAO B can increase DA levels in the brain. A series of compounds was designed and tested in vitro for human H3R (hH3R) affinity and inhibitory activity to human MAO B (hMAO B). Results showed different activity of the compounds towards the two biological targets. Most compounds had poor affinity for hH3R (Ki > 500 nM), but very good inhibitory potency for hMAO B (IC50 < 50 nM). After further in vitro testing (modality of MAO B inhibition, permeability in PAMPA assay, cytotoxicity on human astrocyte cell lines), the most promising dual-acting ligand, 1-(3-(4-(tert-butyl)phenoxy)propyl)-2-methylpyrrolidine (13: hH3R: Ki = 25 nM; hMAO B IC50 = 4 nM) was selected for in vivo evaluation. Studies in rats of compound 13, in a dose of 3 mg/kg of body mass, confirmed its antagonistic effects for H3R (decline in food and a water consumption), decline in MAO B activity (>90%) in rat cerebral cortex (CTX), and an increase in DA content in CTX and striatum. Moreover, compound 13 caused a slight increase in noradrenaline, but a reduction in serotonin concentration in CTX. Thus, compound 13 is a promising dual-active ligand for the potential treatment of PD although further studies are needed to confirm this.

15.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887268

RESUMO

The GPR18 receptor, often referred to as the N-arachidonylglycine receptor, although assigned (along with GPR55 and GPR119) to the new class A GPCR subfamily-lipid receptors, officially still has the status of a class A GPCR orphan. While its signaling pathways and biological significance have not yet been fully elucidated, increasing evidence points to the therapeutic potential of GPR18 in relation to immune, neurodegenerative, and cancer processes to name a few. Therefore, it is necessary to understand the interactions of potential ligands with the receptor and the influence of particular structural elements on their activity. Thus, given the lack of an experimentally solved structure, the goal of the present study was to obtain a homology model of the GPR18 receptor in the inactive state, meeting all requirements in terms of protein structure quality and recognition of active ligands. To increase the reliability and precision of the predictions, different contemporary protein structure prediction methods and software were used and compared herein. To test the usability of the resulting models, we optimized and compared the selected structures followed by the assessment of the ability to recognize known, active ligands. The stability of the predicted poses was then evaluated by means of molecular dynamics simulations. On the other hand, most of the best-ranking contemporary CADD software/platforms for its full usability require rather expensive licenses. To overcome this down-to-earth obstacle, the overarching goal of these studies was to test whether it is possible to perform the thorough CADD experiments with high scientific confidence while using only license-free/academic software and online platforms. The obtained results indicate that a wide range of freely available software and/or academic licenses allow us to carry out meaningful molecular modelling/docking studies.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Ligantes , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Reprodutibilidade dos Testes
16.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35890146

RESUMO

Along with the increase in life expectancy, a significant increase of people suffering from neurodegenerative diseases (ND) has been noticed. The second most common ND, after Alzheimer's disease, is Parkinson's disease (PD), which manifests itself with a number of motor and non-motor symptoms that hinder the patient's life. Current therapies can only alleviate those symptoms and slow down the progression of the disease, but not effectively cure it. So now, in addition to understanding the mechanism and causes of PD, it is also important to find a powerful way of treatment. It has been proved that in the etiology and course of PD, the essential roles are played by dopamine (DA) (an important neurotransmitter), enzymes regulating its level (e.g., COMT, MAO), and oxidative stress leading to neuroinflammation. Chalcones, due to their "simple" structure and valuable biological properties are considered as promising candidates for treatment of ND, also including PD. Here, we provide a comprehensive review of chalcones and related structures as potential new therapeutics for cure and prevention of PD. For this purpose, three databases (Pubmed, Scopus and Web of Science) were searched to collect articles published during the last 5 years (January 2018-February 2022). Chalcones have been described as promising enzyme inhibitors (MAO B, COMT, AChE), α-synuclein imaging probes, showing anti-neuroinflammatory activity (inhibition of iNOS or activation of Nrf2 signaling), as well as antagonists of adenosine A1 and/or A2A receptors. This review focused on the structure-activity relationships of these compounds to determine how a particular substituent or its position in the chalcone ring(s) (ring A and/or B) affects biological activity.

17.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806019

RESUMO

Many studies involving compounds that enhance histamine release, such as histamine H3 receptor (H3R) antagonists, have shown efficacy in inhibiting weight gain, but none have passed clinical trials. As part of the search for H3 receptor ligands that have additional properties, the aim of this study is to evaluate the activity in the reduction in weight gain in a rat model of excessive eating, as well as the impact on selected metabolic parameters, and the number and size of adipocytes of two new H3R antagonists, KSK-60 and KSK-74, which also exert a significant affinity at the sigma-2 receptor. Compounds KSK-60 and KSK-74 are homologues and the elongation of the distal part of the molecule resulted in an approximate two-fold reduction in affinity at H3R, but simultaneously an almost two-fold increase in affinity at the sigma-2 receptor. Animals fed palatable feed and receiving KSK-60 or KSK-74 both at 10 mg/kg b.w. gained significantly less weight than animals in the control obese group. Moreover, KSK-74 significantly compensated for metabolic disturbances that accompany obesity, such as an increase in plasma triglyceride, resistin, and leptin levels; improved glucose tolerance; and protected experimental animals against adipocyte hypertrophy. Furthermore, KSK-74 inhibited the development of inflammation in obesity-exposed adipose tissue. The in vivo pharmacological activity of the tested ligands appears to correlate with the affinity at the sigma-2 receptors; however, the explanation of this phenomenon requires further and extended research.


Assuntos
Receptores Histamínicos H3 , Animais , Histamina , Antagonistas dos Receptores Histamínicos/uso terapêutico , Ligantes , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Receptores Histamínicos H3/metabolismo , Receptores sigma , Aumento de Peso
18.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163351

RESUMO

GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary arteries (hPAs) and compared their effects with the previously proposed, but unconfirmed, GPR18 ligands NAGly, Abn-CBD (agonists) and O-1918 (antagonist). GPR18 expression in hPAs was shown at the mRNA level. PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD fully relaxed endothelium-intact hPAs precontracted with the thromboxane A2 analog U46619. PSB-CB-27 shifted the concentration-response curves (CRCs) of PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD to the right; O-1918 caused rightward shifts of the CRCs of PSB-MZ-1415 and NAGly. Endothelium removal diminished the potency and the maximum effect of PSB-MZ-1415. The potency of PSB-MZ-1415 or NAGly was reduced in male patients, smokers and patients with hypercholesterolemia. In conclusion, the novel GPR18 agonists, PSB-MZ-1415 and PSB-MZ-1440, relax hPAs and the effect is inhibited by the new GPR18 antagonist PSB-CB-27. GPR18, which appears to exhibit lower activity in hPAs from male, smoking or hypercholesterolemic patients, may become a new target for the treatment of pulmonary arterial hypertension.


Assuntos
Ácidos Araquidônicos , Artéria Pulmonar , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácidos Araquidônicos/farmacologia , Humanos , Ligantes , Masculino , Artéria Pulmonar/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
19.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615435

RESUMO

The multitarget-directed ligands demonstrating affinity to histamine H3 receptor and additional cholinesterase inhibitory potency represent a promising strategy for research into the effective treatment of Alzheimer's disease. In this study, a novel series of benzophenone derivatives was designed and synthesized. Among these derivatives, we identified compound 6 with a high affinity for H3R (Ki = 8 nM) and significant inhibitory activity toward BuChE (IC50 = 172 nM and 1.16 µM for eqBuChE and hBuChE, respectively). Further in vitro studies revealed that compound 6 (4-fluorophenyl) (4-((5-(piperidin-1-yl)pentyl)oxy)phenyl)methanone) displays moderate metabolic stability in mouse liver microsomes, good permeability with a permeability coefficient value (Pe) of 6.3 × 10-6 cm/s, and its safety was confirmed in terms of hepatotoxicity in the HepG2 cell line. Therefore, we investigated the in vivo activity of compound 6 in the Passive Avoidance Test and the Formalin Test. While compound 6 did not show a statistically significant influence on memory and learning, it showed analgesic properties in both acute (ED50 = 20.9 mg/kg) and inflammatory (ED50 = 17.5 mg/kg) pain.


Assuntos
Doença de Alzheimer , Receptores Histamínicos H3 , Camundongos , Animais , Colinesterases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Histamina , Receptores Histamínicos H3/metabolismo , Inibidores da Colinesterase/farmacologia , Receptores Histamínicos , Ligantes , Relação Estrutura-Atividade
20.
ACS Chem Neurosci ; 13(1): 1-15, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34908391

RESUMO

In an attempt to extend recent studies showing that some clinically evaluated histamine H3 receptor (H3R) antagonists possess nanomolar affinity at sigma-1 receptors (σ1R), we selected 20 representative structures among our previously reported H3R ligands to investigate their affinity at σRs. Most of the tested compounds interact with both sigma receptors to different degrees. However, only six of them showed higher affinity toward σ1R than σ2R with the highest binding preference to σ1R for compounds 5, 11, and 12. Moreover, all these ligands share a common structural feature: the piperidine moiety as the fundamental part of the molecule. It is most likely a critical structural element for dual H3/σ1 receptor activity as can be seen by comparing the data for compounds 4 and 5 (hH3R Ki = 3.17 and 7.70 nM, σ1R Ki = 1531 and 3.64 nM, respectively), where piperidine is replaced by piperazine. We identified the putative protein-ligand interactions responsible for their high affinity using molecular modeling techniques and selected compounds 5 and 11 as lead structures for further evaluation. Interestingly, both ligands turned out to be high-affinity histamine H3 and σ1 receptor antagonists with negligible affinity at the other histamine receptor subtypes and promising antinociceptive activity in vivo. Considering that many literature data clearly indicate high preclinical efficacy of individual selective σ1 or H3R ligands in various pain models, our research might be a breakthrough in the search for novel, dual-acting compounds that can improve existing pain therapies. Determining whether such ligands are more effective than single-selective drugs will be the subject of our future studies.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Analgésicos/farmacologia , Histamina , Antagonistas dos Receptores Histamínicos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Ligantes , Piperazina , Piperidinas/farmacologia , Receptores sigma , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...